

Astrophotography and the Great Eclipse of 2017

5/2/2017

Astrophotography

Note: Images with a yellow border were taken by me. The others are from the Internet.

- Photographing astronomical objects
 - Solar system → Sun, Moon, planets, comets, meteors
 - Deep space → stars, galaxies, nebulae (planetary & diffuse)

Astrophotography & Me

- Halley's Comet
 - Appears once every 76 years \rightarrow last time in 1986
 - > 1910: spectacular everywhere → tail was huge

Note: The 1910 appearance caused

thought it was poisonous

panic because the Earth went

through the tail → some people

Astrophotography & Me

Note: Aruba is at 12° N latitude, Lebanon is at 40° N latitude → Halley's Comet was 28° higher in the sky

- Halley's Comet
 - Appears once every 76 years → last time in 1986
 - > 1910: spectacular everywhere
 - > 1986: better in southern hemisphere, but nothing like 1910
 - > I took a trip to Aruba to see and photograph it

Astrophotography & Me

- Halley's Comet
 - My first camera purchase → Minolta X-370 & 85 mm lens
 - Also took along a borrowed 100 mm lens
 - ➤ Problem: need 2 minute exposure → stars would not be points!

Astrophotography

- Lens
 - You can do astrophography with an ordinary camera lens
 - ➤ Wide angle → landscape with stars, star trails, Milky Way
 - ➤ Normal → Milky Way
 - ➤ Telephoto → constellations, star fields, comets
 - ➤ Super-telephoto → Sun, Moon, open star clusters, diffuse nebula

Astrophotography

- Lens
 - Required focal length depends on:
 - Size of subject
 - Size of sensor → smaller sensor results in smaller field of view
 - > Same # of pixels, smaller area = smaller pixels = less image quality

Andromeda galaxy 1000 mm telescope APS-C sensor

4/3

Full Frame

Andromeda galaxy 1000 mm telescope 1" sensor

Astrophotography

- Tracking celestial motion
 - Long exposures reveal Earth's rotation → star trails
 - Longer focal length → more motion
 - Example: 30 sec exposure, 400 mm lens (same as 2 min, 100 mm lens)

Astrophotography

Note: The "polar axis" points toward the north star, Polaris, which aligns the axis with Earth's axis

- Tracking celestial motion
 - Long exposures reveal Earth's rotation → star trails
 - ➤ Longer focal length → more motion
 - Solution: mount that can compensate for Earth's rotation
 - Equatorial mount with drive motor
 - Alt-azimuth mount with computer control

Astrophotography & Me

- Halley's Comet
 - My first camera purchase → Minolta X-370 & 85mm lens
 - Also took along a borrowed 100mm lens
 - ➤ Problem: need 2 minute exposure → stars would not be points!
 - > Low-tech solution: geared tripod head turned by hand + finder scope

Spiratone geared tripod head

finder scope with illuminated reticle eyepiece

illuminated reticle

Astrophotography & Me

- Halley's Comet
 - Images from Aruba

Halley's Comet March, 1986

Alpha & Beta Centauri and the Southern Cross March, 1986

Astrophotography & Me

- Bitten by the astronomy bug
 - My 1st telescope → Meade 320 + drive motors
 - > 80mm aperture, 900mm focal length \rightarrow f/11
 - Unfortunately, too "slow" for faint objects like nebulae
 - My 2nd telescope → Celestron Short Tube
 - > 80mm aperture, 400mm focal length \rightarrow f/5
 - Used "piggyback" on the Meade 320

Meade 320

Celestron short tube 80mm f/5

Astrophotography & Me

Note: A total solar eclipse means the Moon fully blocks the Sun

- 1991 total solar eclipse
 - Visible on the west coast of Mexico
 - > I took an eclipse cruise to Mazatlan to try to photograph it
 - > Celestron 80mm + 2.5x Barlow (similar to a teleconverter for camera lenses)
 - Unfortunately, clouds rolled in before totality

my Dad watching the clouds

not my photo, but is what I saw before the clouds came

Astrophotography

- A difficult hobby
 - Weather and visibility
 - Clouds are the enemy!
 - ➤ Atmospheric refraction ("twinkle") → "seeing" is best in cold weather
 - Need to travel to dark skies (light pollution) or eclipse locations
 - Mostly done at night
 - Can result in sleep deprivation
 - > It's easy to damage equipment when you are sleepy in the dark
 - > Many astrophotographers now automate their equipment
 - Expensive!
 - Good telescopes cost a lot, and astronomers are never satisfied
 - → Top quality photography requires an ultra-stable mount \rightarrow \$\$\$
 - > You need lots of accessories, which are also expensive
 - > Lots of down time to fantasize about better equipment

Astrophotography & Me

- After 1991
 - Moon & Sun photography in 2013
 - Assigned subject for May was "Moon"
 - Meade 320 + APS-C sensor camera (Sony A57)
 - Decent results on the Moon, less so on the Sun

Astrophotography

- Viewing the Sun
 - Dangerous!
 - CAN BLIND INSTANTLY THROUGH A TELESCOPE!!
 - CAN BLIND INSTANTLY THROUGH A CAMERA LENS!!
 - > Can be viewed safely by the naked eye ONLY at complete totality

Note: Complete totality means NO part of the Sun is visible, not even "Baily's beads" which occur when the Sun shines through valleys on the lunar surface

Astrophotography

- Viewing the Sun
 - Dangerous!
 - > CAN BLIND INSTANTLY THROUGH A TELESCOPE
 - CAN BLIND INSTANTLY THROUGH A CAMERA LENS
 - > Can be viewed safely by the naked eye ONLY at complete totality
 - > Sun at sunset is much less intense than at noon, but still a danger
 - > DSLR viewfinder may be "safe" at sunset, but not at noon
 - > A mirrorless camera viewfinder is safe because it is an LCD
 - Digital sensor may be damaged by concentrated light (overheating)
 - Digital sensor probably okay at totality because hot spots are small

Astrophotography

- Viewing the Sun
 - Filter needed to view Sun at any time other than totality
 - Reduces light by 1/100,000
 - > Either a mylar film (better) or aluminized glass (old standard)
 - "Eclipse glasses" are usually mylar, and are effective (if good quality)
 - > For telescope (or lens), filter should be in front to prevent heat buildup

mylar solar filter

glass solar filter

Note: Mylar solar filters come in visual

and photographic (less intense)

grades → make sure you have

a visual filter for viewing by eye

eclipse glasses (mylar)

Great Eclipse of 2017

Date: August 21, 2017

- Total solar eclipse visible in the USA
 - Moon moves between the Sun and the Earth
 - Would happen every month if the Moon's orbit wasn't tilted
 - > At least 4 per year, but some are partial or "annular"

partial eclipse: moon never fully covers the sun

annular eclipse: moon smaller than the solar disk

- Total solar eclipse visible in the USA
 - Features of totality
 - > Diamond ring effect → last bit of Sun visible before totality
 - ▶ Baily's beads → sun reaching Earth through lunar valleys
 - ➤ Prominences → loops of "cool" plasma extending beyond the Sun
 - Corona → aura of "hot" plasma extending well beyond the Sun

- Total solar eclipse visible in the USA
 - Features of totality
 - > Diamond ring effect → last bit of Sun visible before totality
 - ▶ Baily's beads → sun reaching Earth through lunar valleys
 - ➤ Prominences → loops of "cool" plasma extending beyond the Sun
 - > Corona → aura of "hot" plasma extending well beyond the Sun

- Total solar eclipse visible in the USA
 - Relatively rare event for a specific location on Earth
 - Last one visible in the USA was in 1979, next one in 2024

Great Eclipse of 2017

Note: Times off the track are for Lebanon, PA (partial eclipse only)

• Track (local times for start of partial and total eclipse)

- Not total in Pennsylvania
 - Path of totality is 71 miles wide
 - Duration is longest along the center line
 - > Path of partial eclipse is thousands of miles wide

Great Eclipse of 2017

- Not total in Pennsylvania
 - 76% of the Sun will be covered in Lebanon
 - > Should be some darkening, but not as impressive as a total eclipse
 - > No diamond ring effect, Baily's beads, prominences, or corona :-(
 - Have to get creative!

approximate coverage in Lebanon, PA

projection through leaves

Note: It does not get completely dark

from the totality track

during a total eclipse, because

sky illumination still exists away

pinhole projection

- Duration
 - Total

- Note: Technically, the greatest duration will be in southern Illinois (by a tiny amount) but the greatest magnitude is near Hopkinsville and the duration is almost the same
- ➤ Maximum: 2 minutes 40 seconds → near Hopkinsville, Kentucky
- Time (at maximum): 1:24:38 pm 1:27:21 pm (central daylight time)
- Partial + total
 - Maximum (Hopkinsville, KY): 2 hours 54 minutes 30 seconds
 - ► Max time (Hopkinsville, KY): 11:56:31 am 2:51:41 pm (cdt)
 - Lebanon: 2 hours 40 minutes 58 seconds
 - Lebanon time: 1:18:17 pm 3:59:15 pm (eastern daylight time)

Great Eclipse of 2017

Note: Totality is less than 3 minutes → a big cloud could take 1 or 2 minutes to pass by

blue is fewest clouds, red is most clouds

- Optimal viewing
 - Maximizing visibility

blue is fewest clouds, red is most clouds

- > Clouds are the enemy! → max duration useless if you can't see it
- > On average, western U.S. has fewer clouds than eastern U.S.
- > Best states: Oregon, Idaho, Wyoming, western Nebraska

Great Eclipse of 2017

- Optimal viewing
 - Maximizing visibility
 - > Clouds are the enemy! → max duration useless if you can't see it
 - > On average, western U.S. has fewer clouds than eastern U.S.
 - > Best states: Oregon, Idaho, Wyoming, western Nebraska
 - ➤ Problem: any location could be cloudy → flexibility is key

cloud cover for August 21, 2016 10:30 am in the west – 1:30 pm in the east

Note: This time I'm waiting for a reliable

Wyoming to South Carolina

weather report to decide where to

go → could be anywhere from

cloud cover for August 21, 2014 10:30 am in the west – 1:30 pm in the east

Great Eclipse of 2017

- Optimal viewing
 - Maximizing scenic potential
 - ► Eclipse landscape better with lower sun → this time the sun is high
 - ➤ Sun angles: Oregon = 40°, Kentucky = 64°, South Carolina = 69°

Ansel Adams "Black Sun"
photograph – not a real eclipse,
the black sun was a result of the
extreme overexposure of the
sun on film. However, it is an
example of a possible
landscape photo when a solar
eclipse is near the horizon.

Great Eclipse of 2017

- Focal length
 - Sun closeup
 - > ~75% of the vertical frame
 - > Full frame = 1955 mm
 - \rightarrow APS-C = 1276 mm (1000 mm = ~59% of the vertical frame)
 - > 4/3 = 1064 mm
 - ~ 1 " = 720 mm (600 mm = $\sim 63\%$ of the vertical frame)

Sun closeup: diamond ring, Baily's beads, prominences, inner corona

4/3

field of view for a 720 mm telescope using a 1" sensor

Full Frame

Great Eclipse of 2017

- Focal length
 - Sun + middle corona
 - > ~45% of the vertical frame for the Sun
 - > Full frame = 1149 mm
 - \rightarrow APS-C = 750 mm (500 mm = ~30% of the vertical frame for the Sun)
 - > 4/3 = 625 mm
 - \rightarrow 1" = 423 mm (300 mm = ~32% of the vertical frame for the Sun)

middle corona

4/3

field of view for a 750 mm telescope using an APS-C sensor

Full Frame

Great Eclipse of 2017

- Focal length
 - Sun + outer corona
 - > ~32% of the vertical frame for the Sun
 - > Full frame = 815 mm
 - \rightarrow APS-C = 532 mm (400 mm = ~24% of the vertical frame for the Sun)
 - > 4/3 = 443 mm
 - > 1" = 300 mm

outer corona

4/3

field of view for a 300 mm telescope using a 1" sensor

Full Frame

- Exposure at totality (no filter)
- 1. Choose ISO
- 2. Move right to f-number of lens
- 3. Move down to phenomenon row for shutter speed

ISO	F/Stop						
100	2.8	4	5.6		8	11	16
200	4	5.6	8		11	16	22
400	5.6	8	11		16	22	32
800	8	11	16		22	32	45
1600	11	16	22		32	45	64
Phenomenon	Shutter Speed						
Bailey's Beads	na	1/8000	1/4000		1/2000	1/1000	1/500
Diamond Ring	1/500	1/250	1/125		1/60	1/30	1/15
Prominences	1/8000	1/4000	1/2000		1/1000	1/500	1/250
Inner Corona	1/125	1/60	1/30		1/15	1/8	1/4
Middle Corona	1/30	1/15	1/8		1/4	1/2	1
Outer Corona	1/2	1	2		4	8	16

Great Eclipse of 2017

Note: DSLR mirror will cause vibrations → use mirror lockup if available

- Exposure @ partial eclipse (with filter!)
 - Same as normal sun photography
 - Depends on filter
 - Determine proper exposure prior to eclipse
 - ► Example: glass filter & f/11 scope (tracking) \rightarrow 1/125 @ ISO 100

• Shutter speed

- Not tracking → must be fast enough to "freeze" motion
 - \rightarrow "600 Rule" \rightarrow 600 / focal length = minimum shutter speed
 - \rightarrow Example: 400 mm lens \rightarrow 600 / 400 = 1.5 seconds max open time
 - > Just an estimate \rightarrow might be better to use 2x the speed for safety

• ISO

- Use ISO needed for desired shutter speed at lens aperture
 - ➤ For telescope, aperture is fixed for lens, aperture can be adjusted

Astrophotography

- Long focal length camera lenses
 - Super-telephoto
 - > Primes are better than zooms
 - > Fast primes are very expensive and heavy
 - > Slower versions are more reasonable and better for astrophotography
 - ▶ Don't use diaphragm in lens → use step-down ring on filter threads to reduce aperture (aberrations are lower for center of lens)

Astrophotography

- Long focal length camera lenses
 - Telephoto + teleconverter
 - > 1.4x and 2x focal length multiplier
 - > 1.4x adds 1 stop to lens f-number, 2x adds 2 stops to lens f-number
 - ➤ Magnifies central area of image → some loss of image quality

Astrophotography

- Long focal length camera lenses
 - Mirror lens
 - Mirrors enable "folded" light path, so lens is much shorter (and lighter)
 - ➤ Fixed aperture → no ability to change basic lens f-number
 - > Inexpensive (\$100-\$300), but quality varies
 - > Focal length for new lenses: 300 mm, 500 mm, 1000 mm (Russia \$\$\$)
 - > FL for legacy lenses: 250 mm, 500 mm, 600 mm, 800 mm, 1000 mm

Convex secondary mirror

Astrophotography

Projection

- Note: Optimal pinhole diameter D = SQRT(L / 750) where L is the distance in millimeters from the pinhole to the paper \rightarrow for L = 1000 mm, D = 1.2 mm
- Safest way to view and photograph an eclipse
 - > Similar to camera obscura → tiny hole projects image on flat surface

